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ABSTRACT. Artificial intelligence (AI) presents an opportunity in anatomic pathology to provide
quantitative objective support to a traditionally subjective discipline, thereby enhanc-
ing clinical workflows and enriching diagnostic capabilities. AI requires access to
digitized pathology materials, which, at present, are most commonly generated from
the glass slide using whole-slide imaging. Models are developed collaboratively or
sourced externally, and best practices suggest validation with internal datasets most
closely resembling the data expected in practice. Although an array of AI models that
provide operational support for pathology practices or improve diagnostic quality and
capabilities has been described, most of them can be categorized into one or more
discrete types. However, their function in the pathology workflow can vary, as a
single algorithm may be appropriate for screening and triage, diagnostic assistance,
virtual second opinion, or other uses depending on how it is implemented and
validated. Despite the clinical promise of AI, the barriers to adoption have been
numerous, to which inclusion of new stakeholders and expansion of reimbursement
opportunities may be among the most impactful solutions.
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1 Introduction
Digital pathology (DP) is a blanket term encompassing the tools, systems, enabling infrastruc-
ture, and associated metadata used when digitizing pathology slides into whole-slide images
(WSIs).1,2 Over the last 20 years, technology has advanced to the point at which WSIs (often
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gigabytes in size) can be captured in minutes and presented to a pathologist for multiple pur-
poses, such as telepathology, research, education, and primary diagnosis (i.e., digital signout).
Digitization has many potential benefits, both for pathology laboratories and patients, by intro-
ducing efficiencies in distribution/sharing, recall, and reuse of pathology assets. It also provides
the required substrate for digital image analysis of histopathology. Although image analysis of
WSIs is not new and has been in use for well over ten years,3 recent advances in machine learning
and computing have greatly expanded image analysis performance and capabilities. Linking
image analysis with other clinical data and concepts is termed “computational pathology” and has
become heavily dependent on the use of artificial intelligence (AI), expanding the potential for
dramatic improvements in pathology automation, diagnostic accuracy, and treatment guidance.1,4,5

Despite a rapid increase in published AI studies and commercial AI development,6 there has
been relatively little movement on adopting AI in pathology practices. This has been attributed to
general uncertainty about how to develop, clinically validate, and deploy algorithms; a relative
lack of regulatory principles and guidance; a paucity of standardization leading to AI algorithm
and system interoperability shortfalls; and trust issues arising from challenges with achieving
algorithm generalizability, including reproducibility failures when applied to new datasets.7

Furthermore, AI deployment necessarily requires digitization, which itself can be expensive to
implement and typically requires modification to existing anatomic pathology (AP) workflows.8

There has also been very little reimbursement opportunity to offset the costs associated with
DP implementation, although new current procedural therapy (CPT) codes (effective January
2023) for digitizing slides for primary diagnosis have recently been introduced.9 Nevertheless,
the potential for AI to improve patient care and to streamline workflows may be too compelling
to ignore.

Although AI serves a number of potential areas in pathology, we present here an overview of
AI in AP with a focus on its application to tissue-based image analysis in WSIs. We describe the
unique challenges of creating and using AI within AP and delve into the clinical utility that the
combination of digital pathology, computational pathology, and AI have to offer. We also discuss
the impact that DP and AI will have on the “omics,” with a final discussion on the future of
AP and the value that these technologies may have on the practice of pathology.

2 DP Carries Unique Challenges for AI
When pathologists view slides through a microscope, they usually alternate between low- and
high-magnification objectives to examine tissue at sufficient detail while balancing the amount of
tissue viewable through the eyepieces. Viewing WSIs occurs in a similar manner, in which path-
ologists navigate by panning and zooming across a display to manage the tradeoff between detail
and field of view (FOV). The interactive multi-resolution nature of WSI viewing makes histo-
pathology quite different from how one views digital images in other medical disciplines and
reflects the intrinsic requirements of viewing large expanses of tissue. AI faces a similar chal-
lenge in that resource limitations usually prevent gigapixel WSIs from being processed in their
entirety without first separating them into much smaller tiles. Analogous to pathologist viewing,
the FOV captured by a single tile depends on the resolution analyzed; models designed to analyze
architectural features that span large tissue areas often benefit from lower resolution tiles cover-
ing more territory, whereas those needing access to fine-scale detail are usually restricted to
smaller, higher resolution FOVs. Capturing both at the same time remains a challenge for
AI in digital pathology. Occasionally, multi-resolution approaches are adopted to capture both
the global overview and fine detail.10–12 In situations in which a slide-level diagnosis is desired,
AI results must be collected from potentially thousands of individual tiles in a slide and then
combined to produce a single result.

The sizes of cells and structures can also be diagnostically informative, unlike image clas-
sification tasks in other domains that may be size-invariant. As a result, efforts to preserve size
information by utilizing scale information from the image metadata, which can vary across
whole-slide scanners, or by avoiding data augmentation techniques based on scaling are often
considered when training AI algorithms in pathology. Likewise, color is usually an important
feature in histopathology images as it may reflect biologically meaningful staining patterns and
can even provide subtle cues about subcellular features. However, color can also be influenced by
different AP laboratory preanalytical processes, such as tissue processing, staining technique,
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or the image acquisition process, making it challenging to distinguish between diagnostically
relevant signals and acquisition artifacts. There have been numerous attempts to mitigate these
effects by applying methods such as color normalization,13,14 incorporating color augmentation
into the training,15 and emphasizing the value of training with diverse and representative
datasets.16 The ability of a trained AI model to generalize to future datasets vitally relies on
accounting for the sources of variability that may be introduced in the preanalytical phase.17

Notably, many of the issues that often plague AI performance do not affect pathologists, who are
much more immune to variations in color, pixel size, and other insignificant attributes. Although
AI can perform functions that are difficult or time-consuming for pathologists, it remains a
challenge to develop AI models that are as robust as pathologists to variations that do not have
diagnostic importance. Thus, much of the interest in AI in pathology is centered on leveraging
the benefits of AI while maintaining safeguards to ensure that performance is not degraded.

Although the glass slide is typically thought to represent a 2D section, 3D has become an
emerging area of interest in DP that has begun to influence the direction of AI. For example,
cytopathology and hematopathology are two subspecialties that often rely on z-stacked WSIs to
resolve depth.18,19 Likewise, work has been done with digitized serial sections to capture 3D
tissue characteristics that, when paired with AI, have driven discovery.20 Additional digital
microscopy modalities that capture tissue images in depth, such as light sheet microscopy21 and
reflectance confocal microscopy,22 have demonstrated clinical utility in pathology. Extending AI
to accommodate a third dimension has been a subject of much recent interest.

3 Clinical Utility of Digital Pathology, Computational Pathology,
and Artificial Intelligence

When new technology is introduced into healthcare, assessing its clinical utility is paramount
prior to its adoption within clinical workflows. The term “clinical utility” is multifaceted and has
many clinical, academic, ethical, and economic implications within healthcare; however, here it
is best described as how one justifies the relevance and usefulness of a variety of novel tech-
nologies, testing methodologies, and treatments for patient care.23,24 In this sense, the factors
driving the clinical utility for DP must be measured against not only how they impact the patient
but also how they affect the operations of the AP laboratory, the effects on differing populations
of patients, and the diagnostic ability of pathologists. Finally, the clinical utility of DP should not
be assessed in a vacuum—although there are DP use cases that exist on their own, its true value
becomes much more apparent when combined with computational pathology and AI tools.

3.1 Assessing the Clinical Utility of AI in Pathology
As stated before, digitization serves as a necessary first step toward enabling AI within AP.
Within an appropriate information technology (IT) infrastructure, whole slide imaging, paired
with computational pathology and AI tools, has the potential to greatly automate diagnostic path-
ology workflows and create enhanced pathology reports (Fig. 1). Marked differences between
traditional manual AP lab processes and AI-enabled workflows include the following:

1. Automatic pathology case assembly and slide analysis: with digital slides, cases can be
automatically assembled and AI used to analyze their constituent slides for scan quality,
staining/cutting issues, discrepant tissue (floaters), and other histology artifacts; slides that
fail these quality control (QC) steps can then be flagged for rescanning or other histology
lab interventions.

2. Intelligent case distribution: digital cases can be distributed based on customized rules
created for each laboratory, such as for load-balancing case workloads across practices/
practice sites, sending complex cases to different subspecialty pathologists, and delivering
to specific AI models for automatic processing prior to pathologist review.

3. Virtual assays using DP data: with multimodal AI analysis of patient data (e.g., radiology
and pathology images, laboratory medicine results, patient demographics, etc.), novel
computational assays can be created and presented to the pathologist at the time of case
review/signout to improve diagnostic accuracy, predict disease recurrence/outcomes, and
predict treatment options.
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4. Improved digital case review: with WSIs, pathologists now have the capability of using
AI-augmented review of slide data, some in ways not possible with traditional microscopy,
such as reviewing multiple serial tissue sections at once, overlaying differently stained
slides upon each other, creation of virtual immunohistochemistry stains, and predicting
which special/immunostains to order.

Of note, each of the above examples’ clinical utility may not be applicable to all pathology
practices. Instead, each specific intended use of AI tools should be assessed to determine not only
their feasibility within a specific laboratory practice but also how one would best validate the tool
for clinical use for specific patient populations and pathology workflow methods.

Although the workflows presented in Fig. 1 represent an optimized, future-state view of AP,
current-state AI algorithms under development or ready for deployment for AP labs are more
focused in nature. In general, these algorithms can be functionally classified into four major
categories:

1. Detection algorithms, e.g., identification of anomalous regions, tumor/non-tumor areas,
immunohistochemical (IHC) stains, biomarkers, inflammation, and other diagnostically
interesting/suspicious regions of interest for pathologist review.

2. Characterization algorithms, e.g., classification of histopathologic patterns, patient diag-
noses, and other classification schema that can be combined with WSI data to characterize

Fig. 1 Clinical impact of digital pathology, computational pathology, and AI on the traditional AP
workflow: (a) traditional AP workflow and (b) AI-enhanced AP workflow. Dark blue denotes manual
tasks, and light blue denotes AI-enhanced/automated tasks. Note that the AI-enhanced workflow
assumes the application of many different AI tools used in tandem, with both the individual tools
and the multi-staged clinical workflows all validated for clinical use by the pathology practice.
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specific patient criteria that may or may not otherwise have been interpretable by the
pathologist alone.

3. Quantification algorithms, e.g., mitotic counts, tumor area/volume, percent of tissue/cells
with specific features, inflammation scoring, IHC scoring, and other objective measurements
that can lead to standardization of diagnostic criteria and improved diagnostic accuracy.

4. Prediction algorithms, e.g., disease outcome, treatment response, molecular subtyping
from WSIs, and other disease predictors not otherwise known from using traditional
methods.

Although most individual algorithms fall primarily into one of these classifications (e.g.,
Fig. 2), many AI models are actually combinations of multiple algorithms that tackle different
tasks. For example, an AI model that predicts the Gleason grade for prostate cancer may have
algorithms that first detect the anomalous areas on the WSI as putative tumor and then character-
ize the glandular structures into the known patterns of prostatic adenocarcinoma. Finally, the
model will then quantify the patterns to estimate the Gleason score. Alternatively, a similar model
can be developed, perhaps using the same building blocks, to predict patient outcome directly
without a Gleason grading intermediary.25

One should also consider that algorithms can be classified based on their clinical utility
itself, i.e., the justifications given to how they will add value to patient care. Although there
can be multiple reasons to justify incorporating an algorithm into a pathology practice, those
most commonly used today in AP concern optimizing efficiency and improving quality.
Criteria for optimizing efficiency include implementing algorithms to decrease turnaround time,
triage patient cases by acuity, reduce the need for manual intervention, and eliminate tedious
activities. For improving quality, the focus is typically on creating more reproducible histopa-
thology outputs used to standardize pathology synoptic reporting or to inform predictive models.
The net effect of these modifications may be a reduction in costs, which itself can be a major
source of clinical utility for labs looking to make the leap to going digital.

Table 1 summarizes the advantages of AI in pathology and limitations that should be
addressed to optimize its clinical utility. Notably, the quality of AI alone does not automatically
translate into superior diagnostic quality or greater efficiency. One should note that there are
use cases in which even a perfectly-performing algorithm provides little to no benefit for many
laboratories or carries no cost savings, efficiency gain, or quality improvement. Ultimately,
one must identify those use cases and deployments in which AI can markedly improve current
state workflows and provide optimal clinical utility.

Fig. 2 Examples of three classes of AI employment in AP: (a) quantitative immunohistochemistry,
in which cell nuclei are detected, and biomarker staining intensity is quantified; (b) heat map over-
laid on a low power digital image of H&E stained tissue to direct the pathologist’s gaze to the
presence of a histologic feature of interest; and (c) slide-level characterization of a prostate biopsy
based on integration of regional classifications.
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3.2 Employing AI in Pathology Workflows
In practice, one of the first considerations for employing AI in the laboratory is understanding
how to integrate it into clinical or operational workflows. These typically take the form of opera-
tional algorithms that assist with data collection, case triage, screening, and QC and assistive
algorithms that contribute through human-AI interaction. For example, an operational algorithm
may be designed to determine whether slides produced by the laboratory or WSIs generated by a
scanner are appropriate for evaluation and may even be designed to automatically trigger a recut
or a rescan if found to be insufficient (Fig. 1).26 An operational algorithm may also be used in a
screening capacity, in which cases or slides flagged by an algorithm as suspicious are triaged for
pathologist review (or in the case of a second read after the pathologist makes their initial diag-
nosis, presented to them for re-review). Assistive algorithms, on the other hand, generally support
a pathologist at the time of slide review, directing pathologists to potentially important regions of
the slide, enhancing the slide viewing experience, or providing adjunct information not otherwise
available to the pathologist during signout.

When operationalizing clinical AI models in pathology, there are many logistical issues that
must be undertaken. For example, AI requires data sources to be integrated and fed to the model,
with new data pipelines developed. If additional clinical data, separate from WSI, is required,
new interfaces will be needed in the electronic health record (EHR) and/or the laboratory infor-
mation system (LIS). Once an AI model output is produced, a decision then needs to be made
regarding whether that data should go back to a clinical health information system (HIS), be it the
LIS, EHR, or pathology image management system. In some cases, the pathologist may work
independently within an AI platform without HIS integration, whereas in other cases, this will be
required so the pathologist can best act on and incorporate the AI model outputs into their clinical
workflow. Integration processes are still in their infancy, with standards for AI data exchange
lacking overall.

In addition, there is the question of whether AI models should be considered to be part of an
existing lab test, a new discrete lab test, or otherwise separate from lab testing in general. Current
Clinical Laboratory Improvement Amendments (CLIA) regulations stipulate a clinical laboratory
be defined as a “facility for the biological, microbiological, serological, chemical, immuno-
hematological, hematological, biophysical, cytological, pathological, or other examination of

Table 1 Potential advantages and limitations of AI use in anatomic pathology.

Advantages

1. Decreased AP reporting turnaround times (TAT).

2. Customized workflows for the pathologist/practice.

3. Reduced non-value added work burden on the pathologist and laboratory staff.

4. Improved quantification and better standardization of histopathology criteria potentially leading to better
patient outcome.

5. Provide novel insights not previously realized by manual pathologist review and interpretation.

6. Potential to better optimize pathologist interaction with the WSI.

Limitations

1. Lack of harmonized standards for AI.

2. Lack of adoption of current imaging standards for DP.

3. Inexperienced laboratory workforce with DP and AI, including a lack of accepted validation criteria for
clinical use.

4. Lack of explainable AI, i.e., non-transparent or “black box” algorithms.

5. Generalizability shortfalls of AI algorithm across AP laboratories, scanners, and sites, including algorithm
drift.

6. Lack of robust IT infrastructures that can support comprehensive AI-driven analyses.
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materials derived from the human body for the purpose of providing information for the diag-
nosis, prevention, or treatment of any disease or impairment of, or the assessment of the health of,
human beings.”27 From the authors’ own personal experiences, many debates have taken place
over the past few years as to whether data derived from specimens should be considered to be
“materials derived from the human body,” raising the question as to whether AI models used in
pathology are subject to formal CLIA regulation. Until that matter is clearly settled within CLIA
and other federal agencies, it is up to the performing laboratory implementing AI models to
determine how best to validate any AI models used within their practice.

Finally, a single algorithm can have broad application supporting either operational or assis-
tive applications, such as a screening, QC, or interactive real-time feedback. For example, grad-
ing a cancer based on histopathologic criteria often is subjective and in many cases can lead to
either overgrading or undergrading of a patient’s tumor. AI-based cancer detection and grading
tools therefore have the ability to be effective screening tools, interactive guides to assist the
pathologist with interpretation,28 or virtual second opinions.29 In these situations, however, even
though the algorithm is the same, each separate use case, otherwise known as the algorithm’s
three different intended uses, must be validated. Importantly, the pathologist’s use of the model,
rather than the model in isolation, should be evaluated, as pathologist behavior may also change
in response to the introduction of these new tools.

3.3 How Do We Optimize Clinical Utility Through Interoperability with
Other Omics?

Although the prior discussion on the clinical utility of AI tools has been focused mostly on the
field of pathology, the reality is that medicine is increasingly moving to multidisciplinary
approaches that rely extensively on multiple diagnostic modalities. With the increasing complexity
of clinical medicine, it is critical, nowmore than ever, to integrate the information content generated
by the three major diagnostic modalities of clinical practice: radiology, pathology, and genomics.
All of these diagnostic specialties can be considered “high-throughput” in terms of the raw patient
data generated. For example, genomics produces a tremendous amount of sequencing data, such as
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and epigenetic data. Radiology generates
large amounts of imaging data, whereas pathology is the key repository for various forms of
lab-based patient data, including both AP and laboratory medicine. In addition, in each specialty,
there are extensive post-processing steps required to convert raw data into actionable diagnostic
content impactful for both patient care and populating each of their respective omics.

Radiomics deals with the implementation of high-throughput, fully automated, computer-
ized extractions of multiple quantitative image features, such as shapes, texture and pattern analy-
sis, and intensity analysis from radiological images and data. These would be details that were
part of the “experience” of a radiologist in the past. However, by explicitly quantifying these
features upfront in an automated manner, the hope is to reduce inter-observer variation for more
uniform outcomes. In addition, availability of this data lends to the mining of these quantitative
features to aid in repeatable diagnosis and prognostic assessments.30–32 Similarly, “pathomics”
aims to extract, mine, and perform data analysis of subvisual features from a histology slide.
Automated extraction and analysis of histopathological features using deep learning-based
measurements can provide novel insights into the diagnosis and prognosis of patients that are
pathologist experience independent. The goal is to use annotated WSIs to generate quantitative
data, correlated with the histomorphological analysis in conjunction with the macroscopic radio-
logical findings. Radiomics and pathomics deal with interpretable quantitative patient data gen-
erated based on morphological assessment algorithms, whereas genomics curates patient sample
data at a molecular level. High-throughput sequencing data from a patient can provide informa-
tion about the mutations, copy number variations, and other complex genetic alterations driving
the disease at molecular level. Molecular pathway level information enables a finer spatial and
temporal resolution of the progression of a patient’s disease pattern, providing novel means to
diagnose as well as monitor the disease.

A current challenge in the use of diagnostic data is the siloed nature of patient data, i.e.,
using clinical data outside of the primary discipline that generates it. In most healthcare centers,
the majority of patient data is essentially trapped in separate HIS with minimal cross-talk of
content and/or expertise. In the case of AI, this is particularly important given that the more
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complex the algorithms become, such as with multimodal AI, the more we need to enable a
clinically actionable omics mindset. Integration of patient metadata, clinical imaging (including
pathology images), treatment plans, proposed interventions, and clinical outcomes is crucial to
creating an enterprise data solution within a healthcare system. The foundation of such an end-to-
end solution lies in the architecture of data, databases, information systems, and platforms that
underpin the various medical specialties.

However, technology is not the only factor at play here—clinicians have a critical role in
driving the interoperability required for such a solution. Interoperability implies the establish-
ment and utilization of various standards of data in any given specialty. To start, clinicians can
demand the use of standards in their everyday work and support efforts to integrate patient diag-
nostic data within the various clinical systems in use. They can further provide the expertise
required to understand the various elements of patient data generated routinely in their discipline
while concurrently working with vendors who can integrate patient data within the hardware,
database, and application layers. Interoperability between major clinical systems, including the
EHR, LIS, picture archiving and communication systems, data warehouses, and AI platforms,
must be seamless with interfaces well established to ensure precise, secure, accurate, reliable, and
uninterrupted exchange of relevant patient data points. A robustly designed layered information
system architecture will thus allow an omics approach to AI, ideally with the different players
(industry, hospitals/healthcare organizations, academic leaders, and providers/patients) driving
the process forward. Finally, multiple AI approaches have been applied for multimodal analysis
of WSIs in combination with genomics, transcriptomics, radiomics, and other large databases.33

Thus, DP, in conjunction with an omics approach, can act as a key cornerstone to supplement the
clinical utility of computational pathology and AI models within AP.

4 Call to Action

4.1 Who is Needed to Enable AI in Anatomical Pathology?
Similar to work in the omics, much of the current effort in pathology AI is inherently multidis-
ciplinary, requiring contributions from data scientists, pathology informaticists, administrative
and operational staff, regulatory and clinical affairs experts, laboratory representatives, and path-
ologists. Each of these stakeholders brings a unique perspective to help shape the design of AI
use cases and modifications to pathology workflows, as well as to provide familiarity with the
costs, benefits, and potential pitfalls of implementation. The ability to understand limitations of a
model, its susceptibility to preanalytical variability, or the limitations of the dataset on which it
was trained or tested helps with predicting failures of a model in practice, which may not be
immediately evident to each of the other stakeholders. It is important to solicit input from all
pertinent stakeholders at the earliest stages of model assessment to avoid unforeseen challenges
down the line, with particular engagement from the users who will likely be interacting with it
the most; this may require including representation specific workgroups (such as practices
with subspecialty signout) and early engagement of laboratory technicians who may be directly
interacting with the model. Data scientists and engineers should be heavily involved in the
model evaluation process to help practitioners interpret the outputs and to settle on solutions.
Informaticists will usually work closely with stakeholders when developing workflow modifi-
cations, especially when there is an expectation that the model will interact with, or reside within,
existing IT infrastructure (e.g., interfacing with the EHR, LIS, or other systems). Cybersecurity,
compliance, data management, computing, and ongoing algorithm monitoring and maintenance
are also important considerations; informaticists are well poised to contribute to these discussions
and engage IT where appropriate.

Another set of relationships that are important to manage are those that exist outside the
institution. As commercial offerings continue to emerge, this presents an opportunity for labo-
ratories to implement solutions many times already deployed at multiple institutions, eliminating
the need to develop algorithms from scratch (although not obviating the responsibility of
validation and assessment). Of note, many institutions have a strict set of rules governing
vendor relationships, starting with the procurement and risk management processes and
extending through IT governance, infrastructure review, and data management. Even absent
strict rules, it is essential to manage vendor engagement in a way that is responsible, ethical,
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and patient-centered. This means due diligence on the part of the practice is required at every step
of deployment, including the following:

1. Early assessment of an AI model to support a specific use case, with assessment of the
value (or utility) of that enhancement to the practice;

2. Evaluation of model performance, typically using representative datasets from one’s own
institution, and attempting to understand the factors that may result in model failure;

3. Stewardship of patient data, especially impacting data sharing and access requirements by
the vendor—if data sharing is a requirement, assessments should be performed to deter-
mine if institutional clinical data will be used for additional vendor development efforts,
including potential future commercialization plans.

Finally, AI is very much at its earliest stages in pathology—it is burdensome for any single
institution to be able to internally develop all of their potential AI needs. Therefore, vendor
relationships are proving to be an important piece of the AI puzzle going forward, but overall
they should be carefully managed, especially if co-development relationships are formed.34

4.2 DP Adoption Must Increase to provide the Substrate for AI
It is currently estimated that there are ∼102;000 pathologists in practice today across ∼130 coun-
tries worldwide. The bigger challenge is that the resources are not evenly distributed as a function
of the population served. A recent analysis showed that two-thirds of the pathologist workforce is
located in just 10 countries.35 In countries where resource shortages are severe, such as Latin
America and Africa, the use of AI tools has the potential to ease the pressures of these shortages
by increasing diagnostic productivity and by providing elevated clinical decision support, thus
increasing the quality of care. Importantly, AI tools must be introduced that are cost-effective,
meet specific needs, and do not carry burdensome technical infrastructure requirements that can-
not be met in low-resource settings. It is essential that the introduction of AI does not create
greater health disparities, and therefore developing improved approaches to digitization, sharing,
computation, as well as access to the relevant expertise, will represent an extremely important
innovation.

There are many steps to take to encourage more widespread adoption, but some of these
steps, including demonstration of clinical safety and acceptability for use, have already begun.
For example, several peer-reviewed publications have shown concordance of primary digital
slide diagnoses to traditional glass microscopy to demonstrate clinical safety,36–38 and recent
regulatory clearances and governing body guidelines show increasing support for DP in the clini-
cal setting. For practices that wish to deploy AI, these have been important hurdles to clear to
eliminate the need for parallel work streams that rely on the glass slide for diagnostics and the
WSI for AI assessment. Ongoing work is needed to understand how DP and AI together can
provide benefits not achieved by traditional best practices.

5 Conclusion
Pathology relies on accurate and timely diagnoses, of which both criteria have the potential to be
aided by AI. Through use cases that span quantification, grading, quality control, prediction, and
prognosis, pathologists can leverage objective and reproducible evidence to support patient care
much more readily than consensus opinion by fellow pathologists. It can also be used in an
interactive way, guiding pathologists to suspicious regions and helping them to interpret
images that may otherwise be difficult to interpret. Consequently, the role of AI in pathology
is multifaceted, but it also represents challenges in deployment that span multiple disciplines,
stakeholders, vendors, government bodies, and payors and require considerations well beyond
the pathology workflow.

As AI research in pathology continues to grow with concomitant improvements in perfor-
mance and expansion of use cases, pathologists are faced with a decision about an AI strategy,
which centers on prioritization and risk. Cost considerations are also at the forefront as the costs
of digitization and deployment remain significant, but a clear avenue for reimbursement has not
yet been established.
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